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Peter Reimann
Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium
(Received 20 October 1993; revised manuscript received 24 January 1994)

A one-dimensional discrete-time dynamics near the onset of deterministic diffusion additively coupled
to weak Gaussian white noise is studied. The diffusion coefficient is related to the escape rate out of an
interval and a method for the calculation of this rate is introduced which, unlike previous investigations,
fully takes into account all relevant escape paths. It is found that the diffusion coefficient of the deter-
ministic dynamics may be considerably reduced by the noise in agreement with numerical simulations. It
is shown that certain fundamental problems in the concept of deterministic diffusion without noise do

not affect the validity of our result.

PACS number(s): 05.45.+b, 05.40.+j, 05.60.+w, 02.50.—r

1. INTRODUCTION

Deterministic diffusion refers to the asymptotically
linear growth of the mean square displacement in a pure-
ly deterministic system. A well studied situation is that
of a one-dimensional dynamics

xn+1=fp(xn) (1)

in discrete time n [1]. Under certain circumstances, one
finds that there exists a nonvanishing finite diffusion
coefficient

(x2)

D:= 1 ,
im o

n— oo

(2)

where the average { ) is taken over a smooth distribution
of initial positions x, with bounded support. The dynam-
ics (1) is assumed to be invariant under inversion and
discrete translation, ie., f,(—x)=—f,(x) and
full+x)=1+f,(x), IEZ. Moreover, the map Sfu(x)
has one local maximum and minimum of order z >0 per
unit cell [/,/ +1] with unstable fixed points at the in-
tegers. It depends smoothly on the parameter p and the
argument x except for possible nondifferentiabilities at
the local extrema. A common example belonging to the
class z =2 is the climbing-sine map

fu(x)=x +pusin(2mx) ; (3)

see Fig. 1.

As pointed out in [2,3], deterministic diffusion only ap-
pears for those parameter values u that lead to fully
developed chaos in the reduced map,

Fui [0,1]1=[0,1], F,(x):=f,(x)modl , 4

i.e., for u values such that f u(x) has a strange attractor
covering the whole unit interval [0,1]. For example, if we
denote by

e=f,(x*) 5)

the distance between the upper boundary y =0 of the
unit cell [ —1,0] and the value of f,(x) at the local max-
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imum x =x*€&[—1,0], see Fig. 1, then for €<0 the
function f,(x) maps every unit cell [/,/ +1] into itself
and consequently the diffusion coefficient (2) vanishes
(e=0 is an exception showing fully developed chaos of
the reduced map but no deterministic diffusion). More
generally, for z > 1 there is an infinity of parameter inter-
vals belonging to periodic. windows of the reduced map
(4) where the diffusion coefficient either vanishes or
diverges [2,3]. The way in which the diffusion coefficient
goes to zero or infinity as one approaches such a parame-
ter interval has been studied in detail [1-5].

In this paper we consider the dynamics (1) additively
coupled to Gaussian white noise

2 2
—&p 20

Xpi1=Fu(x,) &, P(E,)=(2m0?) ™! % (6)

FIG. 1. The solid curve represents the climbing-sine map (3)
with £ =0.82 for x values out of the three unit cells [ —2,—1],
[—1,0], and [0,1]. The local maximum within the unit cell
[—1,0] is denoted by x* and the quantity e=71 “(x‘) is intro-
duced in (5). The critical value of u for which € vanishes and
thus every unit cell is mapped onto itself is given by
p=0.732.... The dashed curve is the map considered in Sec.
II for the calculation of the escape rate out of [ —1,0] which
coincides with the original f,(x) on the unit cell [ —1,0] and is
linear outside; see Eq. (10).
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of small noise strength o. The inclusion of a small
amount of noise is not only suggested from the experi-
mental point of view, but also avoids some theoretical
difficulties of the deterministic dynamics (1), as will be
pointed out in Sec. IV.

We will study the diffusion coefficient (2) for the noisy
dynamics (6) near the upper boundary of a periodic win-
dow of the reduced map (4) where the diffusion coefficient
vanishes in the absence of noise. For the sake of conveni-
ence we confine ourselves to the simplest case character-
ized by small values of the parameter € in (5). It might
seem that this problem has already been solved in the
seminal paper by Geisel and Nierwetberg [1]. However,
for nonvanishing noise strengths o their approach is only
valid for maps f,(x) with discontinuities instead of un-
stable fixed points at the integers (see condition (3c) in
(1D.

We proceed as follows. In Sec. II the diffusion
coefficient is identified with half the escape rate out of a
unit cell [/,/ +1] and a method for the calculation of this
rate is introduced which overcomes the shortcomings or
limitations of previous investigations [1,6—9] of the prob-
lem. Our main result is the scaling law (28) or equivalent-
ly (30) for the diffusion coefficient. The discussion of this
result and the comparison with numerical simulations is
carried out in Sec. III which can be understood without
having followed the calculations in Sec. II. It is found
that the diffusion coefficient of the deterministic dynam-
ics (1) may be considerably reduced in the presence of
noise (6) and an intuitive explanation of this effect is
given for a special case. In Sec. IV some fundamental
problems in the theory of purely deterministic diffusion
are mentioned which were first pointed out by Fujisaka
and Grossmann [3]. Then, with these problems in mind,
the range of validity of our result is explored. In Sec. V
the results are summarized and the properties of the
diffusion coefficient for general parameter values p but
still small noise strengths o are briefly outlined.

II. CALCULATION
OF THE DIFFUSION COEFFICIENT

We consider the Langevin equation (6) for small noise
strengths o close to the onset of deterministic diffusion,
i.e., for small parameter values € in (5). We first derive a
relation between the diffusion coefficient (2) and the es-
cape rate k out of a unit cell [/,/ +1]. To this end let us
focus on the unit cell 7:=[—1,0]. Furthermore, we in-
troduce a small “boundary region”

=[—b,b], b:=0(c/u), (7)
ui=£1,00)>1 ®)

of the unstable fixed point at x =0 and an “‘interior”

T:=[—1+b,—b] of the cell 1. The essence of these
definitions is that within T the deterministic map plays
the dominant role in the Langevin equation (6), i.e., a typ-
ical trajectory looks qualitatively the same as in the ab-
sence of noise. On the other hand, within B the noise
term dominates the dynamics, yielding essentially
Brownian motion.

As in the noiseless case [2,3,10], a typical realization of
the Langevin equation (6) which starts within T will i irreg-
ularly bounce around in T for a a long time. The usual way
the realization finally leaves 1, for concreteness say to-
wards the right hand side, is after having visited a small
neighborhood of the local maximum x * of the map f,(x)
within I, see Fig. 1. If the realization directly jumps into
the “interior” J:=[b,1—b] of the adjacent unit cell [0,1]
it typically will stay there for another long period of time
and thus counts as a “successfull escape attempt.” On
the other hand, if it enters the boundary region B it will
follow essentially a Brownian motion within B for a
period of time which typically is much shorter than the
one spent in I. Then, possibly after having crossed and
recrossed the boundary x =0 of the umt cell I several
times, it enters into 7 or returns into T for another long
period of time and thus counts as a ‘““successful” or “un-
successful escape attempt,” respectively.

The probability of a successful escape attempt per time
step determines the escape rate k (note that in this paper
we take the convention that the rate accounts for escapes
across both the upper and lower boundary of a unit cell).
Clearly, this rate k is the same for any unit cell [/,/ +1].
Since the typical time between successive escapes is very
large we further assume that they are uncorrelated (the
validity of this assumption is discussed in more detail in
Sec. IV, see also Ref. [3]). In a coarse grained description
we are thus dealing with a Markovian nearest-neighbor
random walk on the one-dimensional lattice Z with a
diffusion coefficient (2) given by [11]

k

Dzz . 9)

Next we address the calculation of the escape rate k
out of the unit cell 7=[—1,0]. In previous investiga-
tions of this problem [6,7] the escape rate has been deter-
mined from those realizations of the Langevin equation
(6) which directly leave the unit cell I after having visited
a small neighborhood of the local maximum x* of the
map f,(x). In other words, two important effects are
neglected [12]: (1) realizations may first visit [ —b,0] be-
fore escaping, and (2) realizations may return from [0,b]
into T after a short time. However, these effects are truly
negligible only for b =0, i.e., for vanishing noise o =0 or
infinite slope u — o, see (7). For finite o and u the rate is
enhanced by the first and reduced by the second effect in
comparison with 0 =0 or ¥ — o and it is not clear which
of these competing contributions will dominate. In par-
ticular, our central result that the rate and thus the
diffusion coefficient can be smaller in the presence rather
than in the absence of noise has no simple intuitive ex-
planation for finite u.

In the limit ¥ — oo the map f,(x) has discontinuities
instead of unstable fixed points at the integers. Due to
the relation (9) between the diffusion coefficient and the
escape rate the calculations of Geisel and Nierwetberg [1]
are thus essentially equivalent to those in the above men-
tioned Refs. [6,7]. First order corrections for finite u
have recently been derived in [8] by methods which to
some extent are similar to ours. We finally mention that
in the regime —1<<e<<—o the correct exponentially
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leading Arrhenius factor of the rate has been calculated
in [9], but without the nonexponential prefactor, see also
the discussion below Eq. (33).

In the remainder of this section we outline the main
steps of our method for calculating the escape rate k.
More details and generalizations will be given elsewhere
[13]. In order to determine the escape rate k out of the
unit cell 7 =[—1,0] for weak noise o and small parame-
ters €, for x 20 the map f,(x) can be replaced by its
linearization about the unstable fixed point at x =0:

fulx)=ux (10)

and similarly for x < —1, see Fig. 1. Let W;(x) be an ini-
tial distribution of realizations of the Langevin equation
(6) which is mainly concentrated in I. Then the evolution
of the probability distributions W, (x) is governed by the
master equation

W, )= [" dy Pxlp)W,(p) (11)

where P(x|y) is the transition probability to go in one
time step from y to x. According to (6) we have

P(x]y)=f_wwd§8[x —fu—EIP(&)
_exp{—([x —-fﬂ(y)]2/202}

B V2mo? '

Let us introduce a time-dependent decay rate k(n)

which is given by the relative decrease of the population
in the interval I after one time step:

Jdxw, )= [ dxw,
fldx W,(x)

(12)

+1(x)

k(n):=—L (13)

For large times n the rate k(n) converges towards an
asymptotic value which evidently is the escape rate k in
which we are interested [12]. The criterion for this con-
vergence is the condition that the system must be close to
the quasi-invariant state, i.e., W, ;(x)=W,(x) must be
fulfilled in good approximation. Clearly, by an appropri-
ate choice of the initial distribution W,(x)=:W (x), obey-
ing

wx)= [ dy P(x|y)W(p) (14)

in good approximation, one has k(n)=~k already for
n =0. Then, making use of probability conservation
[ dx W, (x)=[*_dx W,(x), which follows from
(11) and (12), the rate (13) can be rewritten

Jax [T ay Pelyywiy)— [ax wix)

“= [ dx wix)

, (15)

where I:=R\ I is the complement of I. If one further re-
quires that the quasi-invariant density W (x) is symmetric
about the center x =—1 of the interval I, i.e.,
W(—+—x)=W(—1+x), it can be readily shown that

|

(15) is equivalent to
Joax [ [ 7 Palhwoy —wix)

k=2 f dx W(x)

(16)

Next the quasi-invariant density W (x) respecting sym-
metry about x =—3 and approximately fulfilling the
master equation (14) is determined. To this end we first
consider the “true” invariant density p(x) describing the
stationary probability distribution on the interval I in the
absence of noise o =0 at fully developed chaos e=0. The
results of Refs. [14-16] suggest that p(x) typically
behaves as

plx)~|x, —x|1/z 7! (17

close to a boundary x, of the interval I and is positive,
bounded, and smooth on the remainder of I, see also the
example discussed at the end of Sec. III. Thus it is plau-
sible to assume that sufficiently small changes in o and €
will mainly affect the singularities (17) near the boun-
daries of I, whereas one has in good approximation

W(x)=p(x) (18)

on the remainder of I. A more detailed discussion of the
approximation (18) will be given in [13], see also Sec. IV.

For symmetry reasons and due to (18) we are left to
determine W(x) for x Zx,,, where the threshold x,, is
situated slightly below the upper boundary x =0 of I.
More precisely, x, <O is chosen such that the lineariza-
tion (10) of f,(x) applies in good approximation for all
x Zx,,. Since this choice is independent of o and € we
can assume |x; | to be much larger than o and |é| in the
sequel.

In order to determine W (x) for x =2 x,, from the mas-
ter equation (14) we recast the right hand side into an ap-
propriate form. For x =x, the only y values for which
the transition probability P (x|y) in (12) notably contrib-
utes are contained in the domain y Zx, and in a small
neighborhood [x*—8,x*+38] about the local maximum
x* of f,(x) within I, see Fig. 1. The same is true also if
P(x|y) is multiplied by W (y) as can be concluded from
(18) and the behavior of p(x) mentioned below (17). Due
to our choice of x,, the map of f,(y) in the transition
probability (12) can be approximated by the linearization
(10) for y 2 x,,. Similarly to x, the quantity § can be
chosen much larger than o and |e| but still sufficiently
small such that within a § neighborhood of the local max-
imum x* €1 the map f,(x) is well approximated by

fux*+Ax)=e—alAx[?, (19)

where a >0, z is the order of the local extrema, and € is
introduced in (5). Collecting everything, for x > x,, the
right hand side of the master equation (14) can be rewrit-
ten

© d —e+aly|*)? x —uy]?
R e T e S
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Since p(x) is smooth near x =x*, see below (17), we
can replace p(x* +y) in (20) by p(x*). Next we note that
our assumptions so far on the quantities x,, and 6
still allow a choice which fulfills the relation
f(x*+8)~€e—al8|*<x,,. Then, the exponential term in
the first integral on the right-hand side of (20) takes its
maximum with respect to y in the interior of [ —§,8] for
any x Zx,,. Thus for sufficiently small o and € the in-
tegration domain [ —8,8] can be extended over the whole
real axis. Similarly, for any x = x,, the exponential term
in the second integral on the right-hand side of (20) takes
its maximum with respect to y in the interior of the in-
tegration domain [x,;, « ] and, in particular, is negligible
for y values even below x,,. We assume that the same
stays true if the exponential term is multiplied by W (y)
which will turn out to be self-consistent with our final re-
sult for W(y). Hence the integration limit x,;, can be re-
placed by — . In summary, we arrive at

[ dy Pxly)wi(y)
© d X —u 2
—wo)+ [* =2 w(prexp |- Z2L
wolx f_w Vo (y exp[ 2 ’
(21)
for x = x;,, where we introduced
mpx*) [C oo | [x—etalyl)
wo(x):=p(x*) . ‘/zﬂazexp‘ 2o .
(22)
Equation (21) suggests the ansatz
m—1
W(x)= 3 wx) (23)

i=0

for x = x,, where the w;(x) are defined by the recursion
relation

w d —uy]?
wi+1(X):=f_w72—m%wi(y)eXP [_Iig;“zlﬂ_ ] (24)

and the initial condition (22). Note that the functions
w;(x) are defined on the whole real axis by (22) and (24).
The number m of summands in (23) remains to be deter-
mined. From (21), (23), and (24) it follows that

7 PIywW(dy — W (x)=w,(x) (25)

for x = x,,. The evaluation of w,, (x) from (22) and (24) is
straightforward, reading

© dy
- V/7s,

w,, (x)=p(x*)

Xexp

_ [x +u™alyl*—e)]? ]
S b

(26)

where we introduced s,,: =20 [u?"*2—1]/[u’—1]. It
can be readily seen that this implies w,,(x)—0 for

m— 0. In view of (25) it follows that our ansatz (23)
indeed fulfills the master equation (14) for x = x;, in good
approximation if m is chosen sufficiently large.

Due to (25) the numerator in the escape rate (16) is
given by f S" dx w,,(x). As for the denominator, we as-
sume that p(x) is normalized on the interval I =[—1,0]
and that the differences between p(x) and W(x) in the
small boundary regions of I do not change this normali-
zation in good approximation. This implies

k=2 “dx w,(x) @7

for sufficiently large values of m. Inserting (26) into (27)
shows that there is indeed a well-defined limit m — o«
and after some straightforward manipulations one arrives
at the central formula for the diffusion coefficient (9):

172 1/z 172

_ 2u? a ul—1 € .
P=lle] 2u? =
(28)
F(x):=f0 dy erfc (y*—x) , (29)

_ 2, .
where erfc(x):=27"'/2 [ e 7"dy is the complementary
error function. “

III. DISCUSSION OF THE DIFFUSION COEFFICIENT

The diffusion coefficient (28) has the form of a scaling
law where the scaling function F(x) is given by (29). The
specific properties of the map f,(x) in the noisy dynam-
ics (6) only enter into the diffusion coefficient (28) through
the slope u at the unstable fixed points (8), the quantities
z, €, and a describing the local extrema (19), and the in-
variant density p(x*) for e=0 =0 at the local extrema of
the map. The scaling function (29) is universal for fixed
order z of the local extrema. Moreover, F(x) is a mono-
tonically increasing function of x, approaching zero and
infinity for x - — o« and x — + «, respectively. In the
limit u — oo, corresponding to discontinuities instead of
unstable fixed points, the result of Geisel and Nierwet-
berg [1] is recovered.

In order to discuss the behavior of the diffusion
coefficient for fixed parameter € as a function of the noise
strength o it is convenient to recast (28), (29) into the
form

1/z 172

2
ul—
G(x):=f0mdyerfc y—_—fnglu—) , (31)

where sgn(x):=x /|x| is the signum function. For x ap-
proaching zero from above one finds from (31) that
G (x 10)=2 since erfc(+ « )=0 and erfc(— o )=2. Thus
for positive € values the diffusion coefficient (30) ap-
proaches the correct o-independent behavior [1-3]

1/z

lel p(x*) (32)

a

D=2
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in the deterministic limit o <<e. For x approaching zero
from below one can n%ake use in (31) of the asymptotic
property erfc(y)=e~?"/[V'my] for large y. After some
calculations one finds for the diffusion coefficient (30) that

r(1/z+1) lel '
z €
D=—"-—75-— * _—
21/2‘/17. p(x ) a
172 2/z+1
| |2 | o exp |- =L €
u?—1 13 2u? o?

(33)

for €<0 and o <<|€|. Equation (33) has the form of an
Arrhenius law as has to be expected from the relation (9)
between the diffusion coefficient and the escape rate k out
of a unit cell. In particular, Egs. (30) and (33) yield
G (x 10)=0 corresponding to the fact that for € <O the
diffusion coefficient vanishes in the absence of noise.
Note that the noise strength o can take only non-
negative values. Thus the discontinuities of the scaling
function (31) at x =0 and of the diffusion coefficient (30)
at 0 =0 are of no physical relevance. The exponentially
leading Arrhenius factor of the rate following from (9)
and (33) has previously been derived in [9].

In the remainder of this section we restrict ourselves to
positive values of € and hence to non-negative x in (31).
It can be shown analytically that G (x) in (31) takes a glo-
bal minimum at a positive x value x; (z) provided z > 1,
but for convenience we refer to the numerical evaluation
of (31) plotted in Fig. 2. Thus for a fixed positive € the
diffusion coefficient as a function of o takes a global
minimum at o ;, =e€x ;. (2)V (42— 1) /(2u?) independent
of a. In other words, deterministic diffusion is suppressed
by the noise. The position x;,(z) of the minimum as
well as the maximal reduction

G(x10)—G(xp,(2))
R(z):= (34)

G(x10)
of the diffusion coefficient monotonically increase
with z, see Figs. 3 and 4. One can show analytically
that for large z the minimum x.;,(z) approaches
2z/V'm and the reduction of the diffusion coefficient

10

FIG. 2. The universal scaling function G(x) in (31) for
z=0.5,1,1.5,2, 3,5, 10, 20, and 100 (from above). The minima
X min(2) of G (x) for z=10, 20, and 10 are beyond x = 10.

T

0- T T — T T
1 1.4 1.8 2.2 2.6 3
Y 4

FIG. 3. The minimum x;,(z) of the scaling function G (x) in
(31) as a function of z for z > 1.

R (z) converges towards §. For z—1 one finds that
Xmin(2)~[In(z—1)| 72 and R(z)~(z—1)/|In(z —1)].
The logarithmic terms are due to the fact that all deriva-
tives of G (x) vanish for x |0 and z > 1.

In order to compare the diffusion coefficient (30) with
numerical simulations let us introduce for the sake of
convenience a shift of the origin by ;. For the map f,(x)

we take the example belonging to the class z =2,
Fu(x):=4pux>—(u—1)x (35)

for x€[—1,1] and ful+x):=1+f,(x), IEZ, other-
wise. The fact that f,(x) has discontinuous second
derivatives at x =/ + 1 does not play a role. The follow-
ing properties of f,(x) are straightforward:

1 [p=1]" 1 1
— — — ——— =
T3 | 2 4
(36)
a=12, u=9.

For p=4 the parameter € vanishes and f,_,(x)
=T3(2x)/2 on [—1,1], where T;(x) is the cubic

R(z)

Jt
L
|

0 LI S S
J 1 14 1.8 2.2 2.6 3
0 +— T T L A E——
0 20 40 2 60 80 100

FIG. 4. The maximal reduction R (z) of the diffusion
coefficient defined in (34) as a function of z for z > 1. The inset
shows the behavior near z =1 in more detail.
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Chebyshev polynomial. Due to this fact the invariant
density p(x) for e=0=0 on [—1,}] is known to be
p(x)=2/[mV 1—4x?] [16], yielding

4
* ) —

p(x*) ey (37)
Hence the diffusion coefficient in (30) is completely fixed.
The comparison with numerical simulations is shown in
Fig. 5.

The reduction of the diffusion coefficient by noise is
equivalent to a similar behavior of the escape rate k out
of a unit cell according to (9), which has recently been ob-
served also in a numerical study by Franaszek [17]. As
seen at the beginning of Sec. II, a simple intuitive ex-
planation of this effect cannot be given for finite values of
u. However, in the limit u — o the essential mechanism
which leads to a noise-induced reduction of the escape
rate (for z > 1) can be easily understood. For concreteness
we consider the escapes from the unit cell [—1,0] into
[0,1]. Without noise, such an escape takes place upon
iteration of the deterministic dynamics (1) if and only if a
realization visits an (e/a)!’? neighborhood of the local
maximum x * of f,(x) within [ —1,0], cf. (19) and Fig. 1.
In the presence of noise some additional realizations
slightly outside the (€/a)!/? neighborhood of x* will es-
cape, but on the other hand a part of the realizations
within this neighborhood will not escape. Since near x*
the probability density W (x) is approximately constant,
see (18) and below (17), and the map f,(x) has negative
curvature for z > 1, it is obvious that the net effect of the
noise will be a reduction of the escape rate for not too
large noise strengths o. This argument makes it also
plausible that the reduction, e.g., for z=2 will be maxi-
mal for 0 =0 (¢€) and approach 1 for z— « and o >>e.

2 L L N
1.9
1.8
(=]
o 17
o~ 1.6
@«
© 1.5
'
1.4
1.3~
1-2 + T T T T
0 1 2 3 4 5 6 7 8
o/€

FIG. 5. Numerical simulations of the diffusion coefficient (2)
for the noisy dynamics (6), (35) for €= 10~* (circles) and
€=1073 (crosses). The solid curve represents the theoretical re-
sult according to (30), (36), (37). The agreement between simu-
lations and theory improves with decreasing values of € and is
very good for €=1075. The numerical uncertainty due to the
finite number (50000) of realizations and their finite length
(2000) in (2) is below 1%. In particular, the numerical results
were found to be practically independent of the length n in (2)
for n =100 up to n =10%

IV. REMARKS ON THE VALIDITY
OF THE RESULT

As a background for the following discussion we men-
tion two unsolved problems in the theory of deterministic
diffusion in the absence of noise: As pointed out in the
Introduction, deterministic diffusion is ruled out for the
entire u intervals belonging to periodic windows of the
reduced map (4), in particular for the small scale chaotic
bands inside the windows [2] and the boundary points of
the p intervals [3,4]. Fully developed chaos of the re-
duced map and thus deterministic diffusion may occur
only on the complement of these u intervals. It is not
known if the set of u values where deterministic diffusion
does occur has positive measure [3].

It has been shown [4] that the number of nondiffusive u
intervals has an infinity of accumulation points, e.g., for
the climbing-sine map (3). In view of the similarity be-
tween the bifurcation diagrams of the climbing-sine map
and the logistic map g, (x)=px (1—x) we conjecture that
the nondiffusive p intervals are even dense on the u axis
for general maps f,(x) in (1) with z >1 [18]. Putting it
differently, the diffusion coefficient is finite only on a set
of isolated points u, whereas it is zero or infinite on the u
intervals ““in between” belonging to periodic windows of
the reduced map. In fact, the situation reminds one of
the erratic behavior of the Lyapunov exponent in the
period doubling route to chaos [19]. In further analogy,
both the diffusion coefficient and the Lyapunov exponent
have been recognized to play the role of an order parame-
ter close to certain “critical” values of the control param-
eter u. In the period doubling route to chaos the corre-
sponding asymptotic scaling laws do strictly speaking not
apply to the Lyapunov exponent itself but rather to its
envelope [19]. Similarly, in the case of deterministic
diffusion without noise the asymptotic scaling laws de-
rived in [1,2,4,5] are strictly speaking not valid for the
diffusion coefficient itself. However, so far there seems to
be no well-defined quantity to which these scaling laws
apply from a rigorous point of view. The fact that the
diffusion coefficient from numerical simulations seems to
obey the scaling laws and to vanish or diverge only in the
largest periodic windows of the reduced map can be un-
derstood as an artifact of extremely long transients:
within a small periodic window the overwhelming part of
initial points x, in (2) stays near the strange repeller of
the map f,(x) for a very long time exhibiting transient
chaos [10] which very closely resembles ‘“true” fully
developed chaos before the actual attracting set is ap-
proached. Besides this effect due to the finite number of
time steps n in the numerical simulation of the diffusion
coefficient (2) also the finite machine precision may play
an important role [20] which, however, is beyond the
scope of this paper.

Note that generically the above problems of deter-
ministic diffusion without noise only arise in the case
z>1, whereas for z <1 there are often no periodic win-
dows of the reduced map except for the trivial one below
€=0.

One may wonder why these problems did not arise
anywhere in the derivation of the noisy diffusion
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coefficient (28), which in fact might seem to be valid even
in the deterministic limit 0 —0. However, in this deriva-
tion we made use of two rather poorly founded in-
gredients which in view of the above problems definitely
need closer inspection.

We first address the approximation (18) made in the
calculation of the escape rate. For small € and o it is not
difficult to see that this approximation is always valid for
z <1 and for z > 1 provided € = 0 since one remains in the
regime of permanent or transient chaos of the map f,(x)
(with linear continuations outside [ —1,0], see Eq. (10)
and Fig. 1). In contrast to z <1, for z > 1 and negative €
there are periodic windows of the map f,(x) even arbi-
trarily close to €=0. In this case it is obvious that W(x)
becomes very different from p(x) for sufficiently small
noise-strengths 0. However, one can prove [13] that for
z>1 a necessary and sufficient condition for (18) is given
by

e>>—glz7/z (38)

Next we discuss the validity of the relation (9) between
the escape rate and the diffusion coefficient. This relation
relies on the assumption that successive escapes are un-
correlated, i.e., that there is a separation of time scales of
the typical residence time in a unit cell and the relaxation
to the quasistationary state after an escape [3]. Putting it
differently, it is assumed that an ensemble of particles just
escaping say from the unit cell [—1,0] into [0,1] ap-
proach a quasistationary distribution within [0,1] much
faster than the inverse escape rate and that the number of
subsequent escapes into [1,2] or back into [—1,0] is
negligible during this relaxation period.

Let us first consider the case that €20 (o). As dis-
cussed at the beginning of Sec. II, a typical realization es-
caping from [—1,0] into [0,1] visits a small neighbor-
hood of the relative maximum x* of f «(x) and arrives at
x =0(e) at the next time step. If € is not very much
larger than o, the realization may still recross the unsta-
ble fixed point at x =0 with non-negligible probability,
leading to a position x =0 (o) after the last recrossing
[21]. Thus an ensemble of escaping particles, each im-
mediately after its last crossing of x =0, is represented by
a probability distribution centered at x <O (¢) and of
width equal or larger than the noise strength o, where we
made use of €20 (o). For concreteness we assume that
the center is at x =0 (¢€) and the width is equal to O (o)
which turns out to be the worst case. For our estimate at
hand the linearization (10) of the map f,(x) about the
unstable fixed point x =0 can be used in order to describe
the further evolution of the probability distribution.
Neglecting for the moment the influence of the noise dur-
ing this evolution, the position x,, of any realization after
n time steps in given by x, =u "x,. Thus the center of the
probability distribution will be found at x =0 (u"¢) and
the widths will be of order O(u"c). In the presence of
additive Gaussian noise (6), the position x, of any realiza-
tion has to be replaced by a Gaussian about x,. Due to
the linearization (10), the center of the distribution is still
at x =0 (u"€), while O (u "0 ) is now a lower estimate for
the width [22]. In the following we will use this lower es-

timate for the width, which again turns out to represent
the worst case. Consequently, for small parameter values
€ the center of the probability distribution leaves the
boundary region about x =0, i.e., becomes of order O (1),
within a time of order O(In(1/¢€)) and the width of the
distribution becomes of order O (o /€) meanwhile [21].

Due to the definition of the ensemble, subsequent es-
capes into [1,2] or back into [—1,0] could safely be
neglected when dealing within the boundary region about
x =0. After having left this region it becomes possible
that the neighborhoods of the local extrema of f,(x) in
[0,1] are visited where the escape probability is no longer
negligible. From (19) it follows that these neighborhoods
of the local extrema are of order O (e!'/?) [21]. However,
if the width of the probability distribution of order
O (o /€) is much larger than these neighborhoods of or-
der O (€'/?) then the probability to visit these regions and
hence to escape from [0,1] is still negligible. We thus ar-
rive at the condition

e<<g?/zt) (39)

Under the action of the chaotic dynamics, the width of
order O (o /€) becomes of order O(1) after a time of or-
der O(In(e/c)). [We recall that e20O(o). Note that
this does not exclude € <o, in which case we tactily set
O(In(e/o)) equal to zero.] Once the distribution is
spread out over the whole interval [0,1] the quasistation-
ary state is typically reached within a few time steps [23].
Adding up the various contributions which have been de-
scribed and estimated above, the total time from the es-
cape out of [ —1,0] until quasistationarity within [0,1] is
reached is given by O(In(1/€))+O(In(e/o))+0O(1).
Since € and o are assumed to be small and €= O (o), the
first term O(In(1/€)) dominates. As can be seen from (9)
and the discussion of (30) in Sec. III, this term is negligi-
ble in comparison with 1/k for sufficiently small o and €
values which fulfill O (o) <€ and (39). Furthermore, the
escapes during this time can be neglected. Thus the sepa-
ration of time scales is guaranteed.

In the case € <0 (o) and, in particular, for negative €
one can show by similar arguments that the separation of
time scales is fulfilled without any additional condition on
€ and o. [The main difference to the case €>0(o) is
that the center of the initial distribution is at x =0 (o)
instead of x =0 (€).] Hence for general € and o the sepa-
ration of time scales is always guaranteed if they are
sufficiently small and obey the condition (39). From the
derivation of (39) it is can be concluded that this is a
sufficient but not necessary condition.

To summarize, we found that (18) is valid for general
small o and € if z <1 and under the additional necessary
and sufficient condition (38) if z > 1. Further, the separa-
tion of time scales and thus the relation (9) between the
diffusion coefficient and the escape rate holds under the
sufficient condition (39). Consequently, under the same
conditions also the results (28) or equivalently (30) for the
diffusion coefficient are valid. In particular, the problems
of deterministic diffusion without noise mentioned at the
beginning of this section are avoided. We finally note
that the above conditions still allow an arbitrary large
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range of €/0 values in the diffusion coefficient (28) or (30)
for sufficiently small 0.

V. SUMMARY AND OUTLOOK

We studied the noisy dynamics (6) for small noise
strengths o and small distances € from the threshold of
deterministic diffusion. As a first main point we intro-
duced a new method for the calculation of the diffusion
coefficient which allows for an extension of the results of
Geisel and Nierwetberg [1] to smooth maps f,(x). Our
central formula is the scaling law (28) or equivalently (30)
for the diffusion coefficient (2), where u is the slope of
fu(x) at the unstable fixed points, a and z describe the
neighborhood of the local extrema, see (19), and p(x*) is
the invariant density for e=0 =0 at the local extrema.
As a second main issue we found that for e>0 and z > 1
the deterministic diffusion coefficient is reduced in the
presence of noise for noise strengths o of order O(e).
For z—o the suppression R (z) of deterministic
diffusion in (34) approaches its maximal value of 1. The
comparison with numerical simulations in Fig. 5 shows
very good agreement. The third main point is the discus-
sion of our approach in view of the conceptual problems
of deterministic diffusion pointed out by Fujisaka and
Grossmann [3]. We derived a sufficient condition (39) for
the validity of our result. Additionally, for z >1 the
necessary and sufficient condition (38) must be fulfilled.

We end with some remarks on the diffusion coefficient
for more general parameters p but still small noise
strengths . The main effect of the noise is to smooth the
erratic behavior of the zero-noise diffusion coefficient D,.
Whereas very small periodic windows are completely
wiped out by the noise, within larger windows with van-
ishing or infinite D, the diffusion coefficient becomes still
small but positive or large but finite, respectively. Ac-
cordingly, there are four types of asymptotic laws [2] de-
pending on whether one is close to the upper or lower
boundary of a window with vanishing or infinite Dy. In
the present investigation we treated the simplest case of
an upper boundary with vanishing D, whereas in [24,25]
the simplest case of a lower boundary with infinite D
was considered. We suppose that all the remaining cases
can be solved in principle by similar methods, though the

explicit elaboration is far from trivial. Between the
boundary regions of a window described by the asymptot-
ic laws, the diffusion coefficient is related in a simple way
to an appropriately defined escape rate or phase-slip rate,
as, for instance, in (9), and thus one can make use of the
well-known theory of these rates [26]. In passing we note
that also within a window with infinite D, one has noise-
induced suppression of deterministic diffusion, but obvi-
ously of a rather trivial kind and without a minimum of
the diffusion coefficient as a function of the noise
strength.

It has to be expected that the neighborhoods of the
larger windows which are not wiped out by the noise and
where the asymptotic laws for the diffusion coefficient are
valid do not cover the whole domain of the small win-
dows which are wiped out by the noise. In other words,
there are gaps between the larger windows where the
diffusion coefficient is not known. In particular, this con-
cerns the case z <1 where there are often no windows
apart from the trivial one below €=0. In contrast to all
the previously considered situations, there is no kind of
separation of time scales in the gaps between the larger
windows. As a consequence, the diffusion coefficient can
only be calculated for special examples [3,27], but no gen-
eral theory is known.

In the case z >1 with decreasing noise strength o
asymptotic laws for the diffusion coefficient become valid
for smaller and smaller windows with an increasing num-
ber of smaller and smaller gaps in between. In the limit
o —0 the asymptotic laws become meaningless since
their validity is confined to single points, as discussed at
the beginning of Sec. IV.
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